If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+59x-42=0
a = 11; b = 59; c = -42;
Δ = b2-4ac
Δ = 592-4·11·(-42)
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-73}{2*11}=\frac{-132}{22} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+73}{2*11}=\frac{14}{22} =7/11 $
| -10-7b=-9b+10 | | 5x-17=30 | | -11p+4-3p=-11p-20 | | -8t=10-9t | | х^2-5/12x-1/6=0 | | 41-7x=20 | | 5x-2.4=7.2 | | 9w=10w-3 | | 11p+4-3p=-11p-20 | | 390=2x*(x-2) | | 2m/4(-8)=2 | | 2p-9=p | | -m=9-2m | | 1/2x+5-8=200 | | -6x^2-72=24x | | 225+-9+x+x-6=360 | | 5u+6=0 | | 9x-18=3(3x-6) | | 7(x+3)+4=3x+4(5+x) | | 4(8x+9)=-20 | | 120+6x+10=180 | | 9x-22+5x-7=265 | | 25^(x+2)=5^(3x-4) | | -9y-y=-2y | | 4v+6-9=-20 | | f=0.45 | | g8–13=–12 | | 13x-15=12x+8 | | 4v+6=6v | | 2x2+4x−4=0 | | 3p+7=–2 | | 2x^2+4x−4=0 |